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When calculating radial wavefunctions for use in such problems as electron scattering, the 
step size of a step-by-step method is severely limited by the oscillatory nature of the solution. 
However, the radial Schrodinger equation may be solved by computing the phase and 
amplitude of the oscillations; these two functions are slowly varying and permit the use of a 
much larger step size. In this paper it is shown how the method may be adapted to the 
solution of the relativistic radial Dirac equations. This method also enables oscillatory 
solutions over the whole radial distance to be calculated on a logarithmic grid. 

1. INTRODUCTION 

At present programs which solve the integro-differential equations for mixed 
bound-state scattering problems use a variety of different step sizes (see Burke [ 11). 
All the bound-state calculations can be performed on a logarithmic grid but the 
scattering calculations use a normal radial grid in which the step size is doubled three 
or four times during the outward integration. Either the doubling is performed at the 
same place for each oscillatory eigenfunction in which case the highest frequency 
wave determines the step size or the doubling is performed at different places for the 
different eigenfunctions. In this latter case the required integrals of products of these 
functions cannot be evaluated without much interpolation since the discretised 
wavefunctions are evaluated at different points. The integral evaluation (see 
Walker [2]), is the time-consuming part of the calculation. It is thought that if all 
these calculations could be performed on the same logarithmic grid then not only 
would the code be easier to maintain and develop but with the reduced number of 
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grid points used by the logarithmic grid some improvement in computational speed 
may be obtained. The above is an ambitious objective. However, if this can be 
achieved it is hoped that the evaluation of scattering calculations on a logarithmic 
grid will be as widely used as the logarithmic grid in bound-state calculations. This 
paper is the very first step towards this objective in that it demonstrated the 
possibility of evaluating oscillatory wavefunctions on a logarithmic grid. 

Trafton [3] has described a method for calculating an oscillatory solution to the 
radial Schrodinger equation by computing the phase and amplitude of the 
oscillations. These two functions vary more slowly than the original solution and thus 
in a numerical calculation permit the use of a much larger step size. In this paper 
these non-relativistic techniques are adapted for the solution of the relativistic Dirac 
equations. In Section 2 equations defining more slowly varying functions are obtained 
from the radial Dirac equations. Sections 3 and 4 discuss the numerical solution of 
the new equations. These equations may be conveniently solved on the same 
logarithmic grid as used for the calculations of bound-state eigenfunctions. Several 
variations of the method are possible and these are briefly compared in Sections 5 
and 6. Comparisons with analytic solutions and some programming details are 
described in Section 7. 

2. METHOD 

The dimensionless form of the radial Dirac equation as given by Grant [4] is 

(1) 

where 

f(r) = f {E - V(r) + 2c2) 

f(r) = + {E - V(r)}. 

c is the velocity of light, E is the kinetic energy excluding the rest mass energy, V(r) 
is the spherically symmetric potential, and k is the angular momentum quantum 
number. In our units c = 137; the quantum number k is a small integer, positive or 
negative. 

For the oscillatory functions we are considering, the energy E is positive. For large 
r the solution of (1) has the asymptotic form 

P(r)-Nsin(or+~log(2wr)+#} as r+co (2) 
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with a similar form for Q(r), where 

w2 = 2E + E2/c2 

and 

if r-V(r) + Z as I + co, while r = 0 if rV(r) + 0 as r --$ co. In this asymptotic form N 
and 4 are unknown constants. The two boundary conditions associated with Eqs. (1) 
are P(0) = 0 and a normalization condition which specifies the value of N in (2). 

It is possible to eliminate Q from the two equations (1) and then transform the 
result into a single second-order equation to which Trafton’s method [3] can be 
applied. The transformed equation is rather complicated, and involves the second 
derivative of the potential V(r), so it seems preferable to apply Trafton’s approach to 
the equations in their original form. We write 

P(r) = A(r) sin{ W(r) + #} 

Q(r) = B(r) sin{ W(r) + #) + C(r) cos{ W(r) + #} 
(3) 

which involve four unknown functions A, B, C, and W. We substitute these 
expressions for P and Q into Eqs. (I), and equate the coefficients of the sin and cos 
terms, giving the four equations 

$+;A +B=o (4) 

yA+fc=O (5) 

where v(r) = dW/dr. From Eqs. (4) and (7) we easily deduce that 

so that 

AC=8. 

0 a constant, and hence from (5) that 

(8) 
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The function W(r) is then just the integral of v(r), as given by Eq. (8), and the phase 
4 in Eq. (3) arises from the arbitrary constant of integration. We then obtain a pair of 
equations for A and B 

(9) 

If B is eliminated from these two equations we obtain 

where 

d2A - 
-27 

-df’dAD,A --= 
dr J‘ dr 

WI2 o 
A3 

D,&-qu!& 

In the non-relativistic limit, as c + co, this equation reduces to the amplitude equation 
derived by Trafton, and following Trafton’s analysis we therefore use as boundary 
conditions for (9) that both A and B should tend to constant limits as r + co. Then 
for sufficiently large r the derivatives of A will become neglegible, and we obtain an 
asymptotic approximation to A and from Eq. (9) the appropriate asymptotic approx- 
imation to B. 

A(r)-A,,=% 

-LA(r) as r* O”’ (10) 
B(r) - B, = 

rf 

Taking the limit as r+ co, and using the required asymptotic form (3), we find that 

N4 = e’( 1 + 2c7E) 

so that the constant 0 is known in terms of the prescribed value of N. 
It is often convenient to use a numerical scheme with a gradually increasing step 

size as r increases. This can be achieved by making the transformation p = log r and 
using equal intervals in the variable p. This procedure is almost always used in the 
calculation of bound-state eigenfunctions for these equations, as in relativistic self- 
consistent field calculations. In terms of the new independent variable the equations 
become 

$+ka+jB=o 
$f-kB-gA+g=O 

where f = rJ’, g = rg, and for convenience D(r) = fg - k2. 
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Our method now is to construct a numerical solution of the amplitude equations 
(11) on a uniform grid in p, beginning from the known asymptotic form for large r 
and stepping inwards in the direction of decreasing p. This solution is then matched 
to a numerical solution of the original Dirac equations (l), constructed by a simple 
step-by-step method in the direction of increasing r. The two solutions are 
conveniently matched at a point near to the classical turning point, the point r = a 
where D(r) changes sign. 

We denote the result of the outward integration by P,,(r), QJr); some arbitrary 
normalization is chosen to define this solution. Fixing the definition of W(r) in 
Eq. (3) by writing 

W(r) =lr v(r) dr 
a 

the matching conditions require that 

MP,(a) = A (a) sin 4 

MQ,(a) = B(a) sin 4 + C(a) cos 4. 

Solution of these equations for A4 and 4 then gives 

e2 
M2 = {C'P; + (AQ, -B&)*lcr-a, 

and 

sin 4 = MP,(a)/A (a). 

The values of P(r) and Q(r) may then be tabulated over the whole range of r; in the 
outward integration region the functions P, and Q, are multiplied by the factor M, 
and outside this region P and Q are determined from Eqs. (3). 

3. SOLUTION FOR LARGE VALUES OF r 

In this section we describe an iterative scheme for the solution of Eqs. (I), which 
has proved satisfactory for moderately large values of r. The method is analogous to 
Stromgen’s iteration for the non-relativistic form of the amplitude equations (see 
Seaton and Peach [5]). F rom (11) we easily construct the iterative scheme 
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beginning with 
A (0’ = {p/g} ‘14. 

This scheme may be written in the general form 

B(n+l’-FA’“’ A’(“) -( 3 1 
A(“+l) = G(B(“+l),B’(“+l),A(“)) (12) 

for the solution of 
B=F(A,A’), A = G(B, B’, A) 

where A’ denotes dA/dp, etc. 
In practice the functions A(“) and B(“) will be tabulated at equal intervals in the 

logarithmic variable p, and the derivatives A’(“) and B’(“) are replaced by finite 
difference approximations, using central differences over most of the range and one- 
sided differences near the ends. The method is a natural extension of that used by 
Trafton, but the convergence of the iteration is analysed differently. Writing 

#I) = A(n) _ A m m m 
,+“’ = B(“’ _ B 
m m m 

for the differences between the nth iterates and the true solution at the mth grid point, 
we can substitute into a Taylor series expansion of Eqs. (12) about the exact solution 
to obtain 

where 
a = aF/aA = -k/f 

b=aF/aA’=-l/f 

c = cYG/cYB = -k/4g 

d=BG/BB’= 1/4g 

e = aG/iYA = 3(B’ - kB)/4gA 

(13) 

(14) 

and SE) and F’,“’ are sums of terms of two kinds, (i) truncation errors of the 
difference approximations to the derivatives and (ii) terms of second and higher order 
in vg’ and ,LL,,, . (“) In Eqs. (13) D denotes the difference approximation to the derivatives 
A’ and B’. 

This system of equations, for m = 0, 1, 2 ,..., M, can be written in matrix form as 

“(n+ 1) = K 1 Pen’ - SCfl’ 

P cn+ 1) = K 
2v 

(n+ 1) + K, Cl(fl) _ T(n) 
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in an obvious notation. Here K, and K, are band matrices, where the width of the 
band is determined by the choice of the difference approximations; K, is a diagonal 
matrix. Eliminating v (“+I) from these equations gives 

P (ntl) =Q(n) _ (T’“‘+K,S’“‘} 

and if we assume that K, is non-singular we can deduce that 

,#+I) =K1K4K;IV(“) +K,K,K;‘S’“-“-S(n) -K,J(“-i) 

where K, = K, + K,K, . Assuming that T(“) and S@) are negligible, the iteration will 
therefore converge if all the eigenvalues of the matrix K, have modulus less than 
unity; the other matrix, K, K, K; I, clearly has the same eigenvalues as K,. 
If, for example, the derivatives in (13) are approximated by the simple 3-point central 
difference formula, then a general row of the matrix K, has five non-zero elements 
centred on the diagonal, these elements being 

bmdm-, -@mdm + bmcm-1) (-Wm-l-bL, +4h2@,cm+e,)) 
4h2 ’ 2h ’ 4h2 

@ntdm fbmcmt,) bmdmt, 
2h ’ 4h2 ’ 

With the interval size likely to be used in practice the dominant terms in this row are 
the terms of order l/h’; retaining only these terms, applying Gerschgorin’s theorem, 
and using the expressions (14), we find that the iteration converges if h2 > 1/4fg. 
Since f(r)g(r)-+ co as r+ 03, this means that the iteration will converge if r is 
sufficiently large. If we used a grid of equal intervals in the r variable rather than in p 
the same analysis gives the conditions h2 > 1/4fi, which now tends to a constant 
limit as r+ co. Hence the iteration may only converge when the step size h is 
sufficiently large. 

In this analysis we have ignored the effect of the one-sided difference approx- 
imation which must be used near the ends of the range, and we have neglected all 
except the dominant terms of order 0( l/h2). A full account of more refined estimates 
for the spectral radius of the matrix K, is given by Turner [6]. Although no simple 
practical estimate has been found, practical results show that the method does 
converge well for large values of r, but fails in the region of the classical turning 
point. 

4. SOLUTION NEAR THE CLASSICAL TURNING POINT 

The iterative scheme described in the previous section is used to provide a solution 
of the amplitude equations for moderately large values of r. This solution is then used 
as an initial value for the inward integration of Eq. (11) towards the classical turning 
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point. It is well known that the use of standard explicit differences schemes for the 
solution of the non-relativistic amplitude equation is unstable except for small step 
sizes; similar problems are encountered with the solution of the relativistic equations. 
Faisal [7] has used a Newton method for the nonrelativistic equation, and the 
following scheme gives a similar method for the solution of Eq. (11). 

A’(“) +kA’“’ +@‘“‘=O 

B’(n) _ J&o’) - {g + 3fe2/[A(“-1)]4} A(“) + 4fe’/[A’“-“]3 = 0. 
(15) 

At each level of iteration these equations are linear and are easily solved; the 
integration can proceed over a group of three or four grid points at a time, 
convergence at these points then being obtained before proceeding to the next group. 
This scheme may be used to continue the solution inwards to the classical turning 
point, or just beyond it if required. This is sufficient to permit matching to the 
outward integration. 

We shall now discuss briefly the convergence of this discrete Newton iteration. 
Given an initial estimate a(‘) to the solution of the general system of non-linear 
equations F(A) = 0, the Newton process may be written 

&&(n+ I) = ‘&(fl, - I@‘“‘)] -’ . F(&n)) 

where J is the Jacobian of the system. This leads to the relation 

11 Aor+ 1) - AlI < 11 P I/ /I Acn) - AlI 

where 

p = I- [J(W)] - ’ J(E) 

and l$ lies between A and A . (“) The process will therefore converge provided that 
II @)I/ < 1. Consider the convergence of (15) at the (m t 1)st grid point, so that 

A= A m+l 
i 1 B mtl 

and 

p = Q Hf 0 
-(l + Hk) 0 

where 

CZ= 

1 t H’D(r) + 
36H2f 2ez 

[A(“-“15 
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and H = h/I,,, &, being the leading coefficient in the implicit difference scheme used 
for the numerical solution of (15). The value of a may be estimated by using the 
WKB approximation in the denominator, giving 

CL - A4 + 4H2f 282 
-3Hf12 [$I]=O(sj. 

Thus given any reasonable initial estimate, the eigenvalues of @) have modulus less 
than unity, and the Newton iteration converges. 

If we solve (15) by the fourth-order Adams-Moulton process, the standard 
stability theory (see, for example, Lambert [S]) restricts the size of interval which can 
be used by requiring that hD@) < 5. To use a reasonable sized step, such as h = 0.05, 
we are therefore restricted to the region D < 100. Close to the classical turning point 
there is no difficulty, since D(p) is small, but for large r, D(p) increases. But in this 
region the solution of the amplitude equations varies very slowly, and use of the 
trapezium rule was found to give more than adequate accuracy; the trapezium rule is 
unconditionally stable for any interval size. 

5. AN ALTERNATIVE TRANSFORMATION 

An alternative pair of amplitude equations, instead of (9) may be obtained by 
writing 

P(r) = B(r) sin{ IV(r) + $) + C(r) cos{ l@(r) + fj} 

Q(r) = a(r) sin{ l&‘(r) + $1. 
(16) 

As before, $ is an arbitrary phase, and a, B, C, and I@ are unknown functions. 
Equation (3) will be referred to as the P-transformation, and Eq. (16) as the Q- 
transformation. The Q-transformation yields equations similar to those obtained from 
the P-form, and may be obtained very simply by the following interchange: 

k--k 

f--g (17) 

g---J: 

This interchange leaves much of the previous analysis unaltered. The difference 
between the two forms of the transformation is most evident in the analysis of the 
Newton iteration in the previous section. In the Q-form of the analysis the non-zero 
off-diagonal element of den) . IS of order l/g, and is thus a factor of about c* larger 
than in the P-form. The order of the diagonal element is unaltered, and both schemes 
have about the same region of convergence. However, the P-form scheme initially 
converges faster than the Q-form, and in practice it has been found that the Q-form 
often requires one extra iteration to obtain the same relative tolerance. 
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6. SMOOTHER VARIABLE TRANSFORMATION 

Following the analysis of Trafton [3] we have considered the use of the transfor- 
mation from the amplitudes A, B to the “smoother” variables y, z, where 

A =A,Y, B=B,z 

and A,,, B, are asymptotic forms of A and B as in (10). Substituting these into (11) 
we obtain a new pair of equations for y and z, which can be solved by the same 
methods as already described; further details may be found in Turner [6]. Although 
the new variables y and z vary more slowly than A and B for large values of r, the 
transformation does not seem to offer any real advantage. The number of Newton 
iterations for convergence has been found in practice to be the same as for the 
original variables A and B. 

7. RESULTS AND CONCLUSIONS 

In this section we first give some further details of the calculations. Initial values 
for the outward integration are obtained from a power series solution; the outward 
integration then uses the fourth-order Adams-Moulton method. Since the solution is 
monotonic in this region, accuracy is easily checked by the evaluation of a difference 
correction at the outermost point; if the accuracy is inadequate, the difference 
correction can be applied to the solution as necessary. For small values of the 
angular quantum number ]k] < 10, it was found convenient to continue the outward 
integration just into the oscillatory region, but for larger values it is best to stop 
before the oscillatory region is reached. This choice seems to minimize the order of 
approximation used by both the outward integration and the inward solution. The 
solution for larger values of r was obtained as described in Sections 3 and 4, using 
the P-form of the transformation. The evaluation of W(r), as the integral of v(r) to 
use in (3), was performed by using the fourth-order formula discussed by Mayers and 
O’Brien [9]. In parts of the region where a higher-order method is used for the inward 
integration an integration method of the same order is used for the evaluation of this 
integral. 

The results of the calculations have been checked by comparison with Darwin’s 
analytic solution (see Fliigge [lo]), for the Coulomb scattering problem. We used 
asymptotic approximations for evaluating the complex confluent hypergeometric 
functions which define the solution. Buhring [ 1 I] has obtained a real asymptotic 
approximation to the problem, which has been related to the complex solution by 
Johnson and Cheng [ 121. Since the result must be real, the complex series has the 
advantage that the size of the imaginary part of the result gives a useful check on its 
accuracy. Results for small values of r were checked by use of the power series form 
of the hypergeometric functions. We have calculated wavefunctions and phase shifts 
for a variety of different energies and angular momenta. An accuracy of six or seven 
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significant figures in the wavefunction, and about one fewer in the phase shift, has 
been obtained without any difficulty. 
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